Senin, 04 November 2013

Fisika Terapan ( Teori Panas dan Hukum Termodinamika)




BAB I
PENDAHULUAN

1. LATAR BELAKANG

Fisika adalah ilmu yang mempelajari gejala alam dengan mengumpulkan dan mencari hubungan di antaranya untuk memperoleh manfaat.Pemahaman Fisika ditujukan kepada kemampuan mahasiswa untuk memahami hukum-hukum Fisika. Penerapan Fisika dalam kehidupan sehari-hari , penerapan fisika dalam  teknologi, pengembangan Fisika dan pengembangan kemampuan diri dalam bidang keahlian khusus.
     Termodinamika (bahasa Yunani: thermos = ‘panas’ and dynamic = ‘perubahan’) adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal. Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah “termodinamika” biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses “super pelan”. Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang. Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

     Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecuali perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.
     Pada dasarnya, termodinamika adalah ilmu yang mempelajari tentang panas sebagai energi yang mengalir. Oleh karena itu, sejarah berkembangnya ilmu termodinamika berawal sejak manusia mulai “memikirkan” tentang panas. Orang yang pertama kali melakukannya adalah Aristoteles (350 SM). Dia mengatakan bahwa panas adalah bagian dari materi atau materi tersusun dari panas.
2. RUMUSAN MASALAH

Dalam makalah ini dapat dirumuskan hal-hal sebagai berikut:
  1. Apakah yang dimaksud dengan kalor ?
  2. Bagaimanakah penerapan atau aplikasi kalor dalam kehidupan sehari-hari ?
  3. Apakah bunyi hukum thermodinamika yang  pertama,kedua dan ketiga ?
  4. Bagaimanakah penerapan hukum thermodinamika dalam kehidupan sehari-hari
3. TUJUAN

Dari rumusan masalah di atas, dapat dirumuskan tujuan penulisan makalah ini adalah sebagai berikut:

  1. Untuk mengetahui pengertian kalor
  2. Untuk mengetahui bagaimana penerapan kalor dalam kehidupan sehari-hari ?
  3. Untuk mengetahui bunyi hukum pertama,kedua,ketiga thermodinamika ?
  4. Untuk mengetahui bagaimana penerapan hukum thermodinamika dalam kehidupan sehari-hari ?













BAB II
PEMBAHASAN
1.      TEORI PANAS

A.    Pengertian Kalor

Kalor adalah suatu bentuk energi yang diterima oleh suatu benda yang menyebabkan benda tersebut berubah suhu atau wujud bentuknya. Kalor berbeda dengan suhu, karena suhu adalah ukuran dalam satuan derajat panas. Kalor merupakan suatu kuantitas atau jumlah panas baik yang diserap maupun dilepaskan oleh suatu benda.
Dari sisi sejarah kalor merupakan asal kata caloric ditemukan oleh ahli kimia perancis yang bernama Antonnie laurent lavoiser (1743 - 1794). Kalor memiliki satuan Kalori (kal) dan Kilokalori (Kkal). 1 Kal sama dengan jumlah panas yang dibutuhkan untuk memanaskan 1 gram air naik 1 derajat celcius.

B.     Teori Kalor Dasar :

1.      Kalor yang diterima sama dengan  kalor yang dilepas : Azas Black , Penemu adalah Joseph Black (1720 - 1799) dari Inggris.
2.      Kalor dapat terjadi akibat adanya suatu gesekan . Penemunya adalah Benyamin Thompson (1753 - 1814) dari Amerika Serikat
3.      Kalor adalah salah satu bentuk energi , Ditemukan oleh Robert Mayer (1814 - 1878)
4.      Kesetaraan antara satuan kalor dan satuan energi disebut kalor mekanik digagas oleh James Prescott (1818 - 1889)

C. Aplikasi Kalor Dalam kehidupan Sehari-hari

1.      Termos
Termos berfungsi untuk menyimpan zat cair yang berada di dalamnya agar tetap panas dalam jangka waktu tertentu. Termos dibuat untuk mencegah perpindahan kalor secara konduksi, konveksi, maupun radiasi. Dinding termos dibuat sedemikian rupa, untuk menghambat perpindahan kalor pada termos, yaitu dengan cara:
  • permukaan tabung kaca bagian dalam dibuat mengkilap dengan lapisan perak yang berfungsi mencegah perpindahan kalor secara radiasi dan memantulkan radiasi kembali ke dalam termos,
  • dinding kaca sebagai konduktor yang jelek, tidak dapat memindahkan kalor secara konduksi, dan
  • ruang hampa di antara dua dinding kaca, untuk mencegah kalor secara konduksi dan agar konveksi dengan udara luar tidak terjadi.
2.      Setrika
Setrika terbuat dari logam yang bersifat konduktor yang dapat memindahkan kalor secara konduksi ke pakaian yang sedang diseterika. Adapun, pegangan seterika terbuat dari bahan yang bersifat isolator.
3.      Panci Masak
Panci masak terbuat dari bahan konduktor yang bagian luarnya mengkilap. Hal ini untuk mengurangi pancaran kalor. Adapun pegangan panci terbuat dari bahan yang bersifat isolator untuk menahan panas.

D. Aplikasi Kalor Dalam Teknologi
Pompa kalor adalah mesin yang memindahkan panas dari satu lokasi (atau sumber) ke lokasi lainnya menggunakan kerja mekanis. Sebagian besar teknologi pompa kalor memindahkan panas dari sumber panas yang bertemperatur rendah ke lokasi bertemperatur lebih tinggi. Contoh yang paling umum adalah lemari es, freezer, pendingin ruangan, dan sebagainya.
Pompa kalor bisa disamakan dengan mesin kalor yang beroperasi dengan cara terbalik. Satu tipe yang paling umum dari pompa kalor dengan menggunakan sifat fisik penguapan dan pengembunan suatu fluida yang disebut refrigeran. Pada aplikasi sistem pemanasan, ventilasi, dan pendingin ruangan, pompa kalor merujuk pada alat pendinginan kompresi-uap yang mencakup saluran pembalik dan penukar panas sehingga arah aliran panas bisa dibalik. Secara umum, pompa kalor mengambil panas dari udara atau dari permukaan. Beberapa jenis pompa kalor dengan sumber panas udara tidak bekerja dengan baik setelah temperatur jatuh di bawah -5 oC (23 oF).


ü  Cara Kerja
Berdasarkan pada hukum kedua termodinamika, panas tidak bisa secara spontan mengalir dari sumber bertemperatur rendah ke lokasi bertemperatur tinggi; suatu kerja dibutuhkan untuk melakukan ini. Pompa kalor berbeda dalam hal bagaimana mereka mengaplikasikan kerja tersebut untuk memindahkan panas, namun pada dasarnya pompa kalor adalah mesin kalor yang bekerja secara terbalik. Mesin kalor membuat energi mengalir dari lokasi yang lebih panas ke lokasi yang lebih dingin, menghasilkan fraksi dari proses tersebut sebagai kerja. Kebalikannya, pompa kalor membutuhkan kerja untuk memindahkan energi termal dari lokasi yang lebih dingin ke lokasi yang lebih panas.
Sejak pompa kalor menggunakan sejumlah kerja untuk memindahkan panas, sejumlah energi yang dibuang ke lokasi yang lebih panas mengandung kalor yang lebih tinggi dari pada sejumlah kalor yang diambil dari sumber dingin. Satu tipe pompa kalor bekerja dengan mengeksploitasi sifat fisik penguapan dan pengembunan fluida yang disebut refrigran. Fluida yang bekerja, pada keadaan gasnya, diberi tekanan dan disirkulasikan menuju sistem dengan kompresor. Pada satu sisi dari kompresor, di mana gas dalam keadaan panas dan bertekanan tinggi, didinginkan di penukar panas yang disebut kondenser, hingga fluida itu mengembun pada tekanan tinggi. Refrigeran yang telah mengembun melewati alat penurun tekanan yang dapat dilakukan dengan memperluas volume saluran (memperlebar saluran atau memperbanyak cabang), atau juga bisa dengan penghambat berupa turbin. Lalu, refrigeran yang berbentuk cair masuk ke sistem yang ingin didinginkan. Dalam proses pendinginan itu, refrigeran mengambil panas sehingga refrigeran kembali menguap dan sistem menjadi dingin.
Dalam sistem seperti ini, sangat penting bagi refrigeran untuk mencapai suhu tinggi ketika diberi tekanan, karena panas sulit bertukar dari fluida dingin ke lokasi yang lebih panas secara spontan. Dalam hal ini, refrigeran harus bersuhu lebih tinggi dari temperatur penukar panas. Dengan kata lain, fluida harus bertekanan rendah jika ingin mengambil kalor dari suatu sistem dan menguap, dan fluida harus bertekanan tinggi jika ingin membuang kalor dan mengembun. Hal ini sesuai dengan persamaan gas ideal yang menyatakan bahwa temperatur berbanding lurus dengan tekanan. Jika hal ini tercapai, efisiensi tertinggi akan tercapai.

2.  HUKUM-HUKUM DASAR TERMODINAMIKA

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
A.  Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya
B. Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
C. Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

D. Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol

E. Aplikasi Hukum Termodinamika Dalam Kehidupan Sehari-hari
Aplikasi Hukum Termodinamika
Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.
Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:
1. Sistem Terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
2. Sistem Tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan.
3. Sistem Terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.
Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
1. Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.

2. Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
Hukum pertama termodinamika adalah suatu pernyataan mengenai hukum universal dari kekekalan energi dan mengidentifikasikan perpindahan panas sebagai suatu bentuk perpindahan energi. Pernyataan paling umum dari hukum pertama termodinamika ini berbunyi: Kenaikan energi internal dari suatu sistem termodinamika sebanding dengan jumlah energi panas yang ditambahkan ke dalam sistem dikurangi dengan kerja yang dilakukan oleh sistem terhadap lingkungannya.
Pondasi hukum ini pertama kali diletakkan oleh James Prescott Joule yang melalui eksperimen-eksperimennya berhasil menyimpulkan bahwa panas dan kerja saling dapat dikonversikan. Pernyataan eksplisit pertama diberikan oleh Rudolf Clausius pada 1850: "Terdapat suatu fungsi keadaan E, yang disebut 'energi', yang diferensialnya sama dengan jumlah kerja yang dipertukarkan dengan lingkungannya pada suatu proses adiabatik."
Hukum kekekalan energi: Energi tidak dapat diciptakan dan tidak dapat dihancurkan/dihilangkan. Tetapi dapat ditransfer dengan berbagai cara.
Aplikasi: Mesin-mesin pembangkit energi dan pengguna energi. Semuanya hanya mentransfer energi, tidak menciptakan dan menghilangkan.

3. Hukum Kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
Hukum keseimbangan / kenaikan entropi: Panas tidak bisa mengalir dari material yang dingin ke yang lebih panas secara spontan. Entropi adalah tingkat keacakan energi. Jika satu ujung material panas, dan ujung satunya dingin, dikatakan tidak acak, karena ada konsentrasi energi. Dikatakan entropinya rendah. Setelah rata menjadi hangat, dikatakan entropinya naik.
Aplikasi: Kulkas harus mempunyai pembuang panas di belakangnya, yang suhunya lebih tinggi dari udara sekitar. Karena jika tidak Panas dari isi kulkas tidak bisa terbuang keluar. Formulasi Kelvin-Planck atau hukum termodinamika kedua menyebutkan bahwa adalah tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata mengubah energi panas yang diperoleh dari suatu reservoir pada suhu tertentu seluruhnya menjadi usaha mekanik. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah; dengan kata lain, tidak semua proses di alam semesta adalah reversible (dapat dibalikkan arahnya). Sebagai contoh jika seekor beruang kutub tertidur di atas salju, maka salju dibawah tubuh nya akan mencair karena kalor dari tubuh beruang tersebut. Akan tetapi beruang tersebut tidak dapat mengambil kalor dari salju tersebut untuk menghangatkan tubuhnya. Dengan demikian, aliran energi kalor memiliki arah, yaitu dari panas ke dingin. Satu aplikasi penting dari hukum kedua adalah studi tentang mesin kalor. Mesin kalor adalah sebutan untuk alat yang berfungsi mengubah energi panas menjadi energi mekanik.
Dalam mesin mobil misalnya, energi panas hasil pembakaran bahan bakar diubah menjadi energi gerak mobil. Tetapi, dalam semua mesin kalor kita ketahui bahwa pengubahan energi panas ke energi mekanik selalu disertai pengeluaran gas buang, yang membawa sejumlah energi panas. Dengan demikian, hanya sebagian energi panas hasil pembakaran bahan bakar yang diubah ke energi mekanik. Contoh lain adalah dalam mesin pembangkit tenaga listrik; batu bara atau bahan bakar lain dibakar dan energi panas yang dihasilkan digunakan untuk mengubah wujud air ke uap. Uap ini diarahkan ke sudu-sudu sebuah turbin, membuat sudu-sudu ini berputar. Akhirnya energi mekanik putaran ini digunakan untuk menggerakkan generator listrik.


4. Hukum Ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
Hukum suhu 0 Kelvin (-273,15 Celcius): Teori termodinamika menyatakan bahwa panas (dan tekanan gas) terjadi karena gerakan kinetik dalam skala molekular. Jika gerakan ini dihentikan, maka suhu material tsb akan mencapai 0 derajat kelvin.
Aplikasi: Kebanyakan logam bisa menjadi superkonduktor pada suhu sangat rendah, karena tidak banyak keacakan gerakan kinetik dalam skala molekular yang menggangu aliran elektron.
Contoh soal
Gambar di dibawah menunjukkan bahwa 1.200 J kalor mengalir secara spontan dari reservoir panasbersuhu 600 K ke reservoir dingin bersuhu 300 K. Tentukanlah jumlah entropi dari sistem tersebut. Anggap tidak ada perubahan lain yang terjadi.
 Description: img1
Jawab
Diketahui = 1.200 J, T1 = 600 K, dan T2 = 300 K.
Perubahan entropi reservoir panas:
ΔS1 = Q1/T1 = -1.200J/600K = -2J/K
Perubahan entropi reservoir dingin:
ΔS2 = Q2/T2 = 1.200J/300K = 4J/K
Total perubahan entropi total adalah jumlah aljabar perubahan entropi setiap reservoir:
ΔSsistem = ΔS1 + ΔS2 = –2 J/K + 4 J/K = +2 J/K
b. Mesin Pendingin
Mesin yang menyerap kalor dari suhu rendah dan mengalirkannya pada suhu tinggi dinamakan mesin pendingin (refrigerator). Misalnya pendingin rungan (AC) dan almari es (kulkas). Perhatikan Gambar 9.9! Kalor diserap dari suhu rendah T2 dan kemudian diberikan pada suhu tinggi T1. Berdasarkan hukum II termodinamika, kalor yang dilepaskan ke suhu tinggi sama dengan kerja yang ditambah kalor yang diserap (Q1 = Q2 + W)
Description: img2Gambar 9.9 Siklus mesin pendingin.
Hasil bagi antara kalor yang masuk (Q1) dengan usaha yang diperlukan (W) dinamakan koefisien daya guna (performansi) yang diberi simbol Kp. Secara umum, kulkas dan pendingin ruangan memiliki koefisien daya guna dalam jangkauan 2 sampai 6. Makin tinggi nilai Kp, makin baik kerja mesin tersebut.
Kp = Q2 /W
Untuk gas ideal berlaku:
Kp = (Q2/Q1-Q2) = (T2/T1-T2)
Keterangan
Kp : koefisien daya guna
Q1 : kalor yang diberikan pada reservoir suhu tinggi (J)
Q2 : kalor yang diserap pada reservoir suhu rendah (J)
W : usaha yang diperlukan (J)
T1 : suhu reservoir suhu tinggi (K)
T2 : suhu reservoir suhu rendah (K)
Contoh Soal
Mesin pendingin ruangan memiliki daya 500 watt. Jika suhu ruang -3 oC dan suhu udara luar 27 oC, berapakah kalor maksimum yang diserap mesin pendingin selama 10 menit? (efisiensi mesin ideal).
Penyelesaian:
Diketahui: = 600 watt (usaha 500 J tiap 1 sekon)
T1 = 27 oC = 27+ 273 = 300 K
T2 = -3 oC = -3 + 273 = 270 K
Ditanya: Q2 = … ? (= 10 sekon)
Jawab:
Kp = T2/(T1-T2)
Q2/W = T2/(T1-T2)
Q2 = T2/(T1-T2)W = (270)(300-270)(500)=4.500J (tiap satu sekon)
Dalam waktu 10 menit = 600s
Q2=4.500 x 600 = 2,7×106 J

F. Aplikasi Hukum Termodinamika II Dalam Teknologi
ü  Mesin diesel
Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakardinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).
Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (lihat biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering.
ü  Prinsip Kerja
Prinsip kerja motor diesel adalah merubah energi kimia menjadi energi mekanis. Energi kimia di dapatkan melalui proses reakasi kimia (pembakaran) dari bahan bakar (solar) dan oksidiser (udara) di dalam silinder (ruang bakar). Pada motor diesel ruang bakarnya bisa terdiri dari satu atau lebih tergantung pada penggunaannya dan dalam satu silinder dapat terdiri dari satu atau dua torak. Pada umumnya dalam satu silinder motor diesel hanya memiliki satu torak.
Tekanan gas hasil pembakaran bahan bakan dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi. Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengan siklus otto).
Pada mesin Diesel, dibuat ”ruangan” sedemikian rupa sehigga pada ruang itu akan terjadi peningkata suhu hingga mencapai ”titik nyala” yang sanggup ”membakar” minyak bahan bakar. Pemampatan yang biasanya digunakan hingga mencapai kondisi ”terbakar” itu biasanya 18 hingga 25 kali dari volume ruangan normal. Sementara suhunya bisa naik mencapai 500 oC . Cara kerjanya mudah, minyak solar yang sudah dicampur udara (seperti yang keluar dari semprotan obat nyamuk) disemprotkan ke dalam ruangan yang telah ”mampat” dan bersuhu tinggi, sehingga dapat langsung membuat ”kabut solar” tadi meledak dan mendorong ”piston” yang kemudian akan menggerakkan poros-poros roda, singkatnya menjadi TENAGA. Kejadian ini berulang-ulang dan tenaga yang muncul pun dapat dimanfaatkan untuk menggerakkan mobil, generator listrik, dan sebagainya.
 Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar diesel disuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).
Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan.
Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen : Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu para putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat berkerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka bisa mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih mencapai tujuan ini melalui elektronik kontrol modul (ECM) atau elektronik kontrol unit (ECU) – yang merupakan “komputer” dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidrolik untuk mengatur kecepatan mesin.





















BAB III
PENUTUP
1.            Kesimpulan
A.    Kalor adalah suatu bentuk energi yang diterima oleh suatu benda yang menyebabkan benda tersebut berubah suhu atau wujud bentuknya. Kalor berbeda dengan suhu, karena suhu adalah ukuran dalam satuan derajat panas. Kalor merupakan suatu kuantitas atau jumlah panas baik yang diserap maupun dilepaskan oleh suatu benda.
B.     Hukum Awal (Zeroth Law) Termodinamika. Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
C.     Hukum Pertama Termodinamika . Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
D.    Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
E.     Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol

2.      Saran
Adapun saran yang dapat diberikan oleh tim penulis kepada para pembaca, khususnya bagi mahasiswa STKP-PGRI Lubuklinggau jurusan MIPA program studi pendidikan fisika yaitu :
1)      Sebagai calon guru yang baik, hendaknya kita menguasai semua materi tentang fisika, serta memahami bagaimana cara menerapkannya.
2)      Sebagai calon guru yang baik, guru jika tidak boleh malas dalam megkaji ilmu agar dapat mengikuti perkembangan sains dan teknologi.
3)      Guru juga tidak boleh hanya mempelajari ilmu fisika hanya dari sumber saja, karena wawasan yang luas dapat menambah penilain siswa terhadap guru tesebut







DAFTAR PUSTAKA
ü  Giancoli. 2001. Fisika Universitas Jilid 1. Erlangga : Jakarta.
ü  Http://.goegle.com/2012/11/23/teori-panas-kalor-dunia/








1 komentar:

  1. Merkur Slots - Merkur Slot Machines - Deccasino
    All Merkur Slot Machine 온카지노 Games. Merkur's slot machines are 메리트카지노 all made in Germany, and are ready for use in your 인카지노 home.

    BalasHapus